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Neural Dynamics of Choice: Single-Trial Analysis of
Decision-Related Activity in Parietal Cortex
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Previous neurophysiological studies of perceptual decision-making have focused on single-unit activity, providing insufficient informa-
tion about how individual decisions are accomplished. For the first time, we recorded simultaneously from multiple decision-related
neurons in parietal cortex of monkeys performing a perceptual decision task and used these recordings to analyze the neural dynamics
during single trials. We demonstrate that decision-related lateral intraparietal area neurons typically undergo gradual changes in firing
rate during individual decisions, as predicted by mechanisms based on continuous integration of sensory evidence. Furthermore, we
identify individual decisions that can be described as a change of mind: the decision circuitry was transiently in a state associated with a
different choice before transitioning into a state associated with the final choice. These changes of mind reflected in monkey neural
activity share similarities with previously reported changes of mind reflected in human behavior.

Introduction

Sequential sampling models, such as the drift-diffusion model
(for review, see Ratcliff and McKoon, 2008) or the leaky compet-
ing accumulator model (Usher and McClelland, 2001), are a pop-
ular class of models for perceptual decision-making. In this
framework, every decision is characterized by a gradual accumu-
lation of sensory evidence until a decision criterion is reached. If
a neural circuit were to implement such a mechanism, pools of
decision-related neurons should gradually change their activity
on a single-trial basis. In contrast, other authors have suggested
that arriving at a decision might be better characterized by a more
abrupt, jump-like transition from an uncommitted to a commit-
ted state (Durstewitz and Deco, 2008; Miller and Katz, 2010). As
will be discussed in more detail below, either type of dynamics
can be realized with neural attractor networks.

Previous neurophysiological studies of the random-dot motion
direction discrimination task have focused on single-unit (SU) re-
cordings in nonhuman primates. Decision-related activity has been
observed in a variety of brain areas, including the lateral intraparietal
area (LIP) in parietal cortex (Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Churchland et al., 2008), areas in (pre)frontal
cortex (Kim and Shadlen, 1999), and the superior colliculus (SC;
Horwitz and Newsome, 2001). Although the trial-averaged firing
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rate of decision-related LIP neurons has been demonstrated to be
consistent with an integration-to-threshold mechanism (Mazurek et
al., 2003; Ditterich, 2006; Churchland et al., 2008), the neural dy-
namics of individual decisions cannot be reliably assessed with the
limited number of spikes that are emitted by a single neuron. Hor-
witz and Newsome (2001) have noticed streakiness in the spike
trains of SC neurons and have raised the question whether this is
attributable to relatively fast transitions between a low and a high
firing rate state. In contrast, Roitman and Shadlen (2002) and
Churchland et al. (2011) have provided indirect arguments for LIP
neurons undergoing a gradual firing rate change.

To directly assess the neural dynamics in LIP during individ-
ual decisions, we, for the first time, take advantage of simultane-
ous recordings from multiple decision-related neurons during a
three-choice version of the motion discrimination task. First, us-
ing simultaneous recordings from multiple neurons belonging to
the same decision pool, we focused on the question of how the win-
ning pool makes its transition from an uncommitted to a committed
state. Using a number of different analysis techniques, we provide
evidence for single-trial LIP spike trains being more consistent with
a gradual change in activity rather than more abrupt state transi-
tions. To analyze simultaneous recordings from neurons with differ-
ent choice selectivity, we performed a hidden Markov model
(HMM) analysis (Radons et al., 1994; Abeles et al., 1995; Seidemann
etal., 1996; Gat et al., 1997; Jones et al., 2007; Miller and Katz, 2010).
This analysis allowed us to further characterize the single-trial dy-
namics and to detect “changes of mind” during individual decisions.
We characterize the properties of these changes of mind reflected in
monkey neural activity and compare them with previously reported
properties of changes of mind reflected in human behavior (Resulaj
etal., 2009).

Materials and Methods

Experimental design and data collection. Details of the experimental ap-
proach can be found in the study by Bollimunta and Ditterich (2012).
Briefly, three rhesus macaques (Macaca mulatta) of either sex were im-
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planted with a recording chamber giving access to LIP in a sterile surgery
under general anesthesia. A multielectrode drive with five independently
movable electrodes (Mini Matrix; Thomas Recording) was used for iso-
lating multiple SUs with the help of Sort Client (Plexon). The response
fields (RFs) of these SUs were then mapped simultaneously using a
memory-guided saccade task. Only SUs with spatially selective activity
during the memory period were selected for recording during the per-
ceptual decision task. All procedures were approved by the Institutional
Animal Care and Use Committee and were in accordance with the Na-
tional Institutes of Health Guide for the Care and Use of Laboratory
Animals.

The monkeys had to keep fixation, monitored by an infrared video eye
tracker (Applied Science Laboratories), while watching a three-
component random-dot motion stimulus. On each trial, the coherences
of the three embedded motion components, ranging from 0 to 40%, were
randomly drawn from 51 possible combinations. The three directions of
the coherent motion components were always separated by 120°. Each
motion direction was associated with one of three choice targets that
appeared on the computer screen before motion stimulus onset. These
targets were placed such that as many of the isolated SUs as possible had
exactly one of the targets in their RFs. This could result in multiple
neurons with overlapping RFs having the same target in their RFs, but
sometimes we had neurons with non-overlapping RFs and were able to
place two different targets in the RFs. The monkeys watched the stimulus
until they were ready to respond and then made a goal-directed eye
movement to one of the targets. They received a fluid reward for choos-
ing the target associated with the strongest motion component in the
stimulus. When all three motion components had identical coherences, a
situation referred to as zero net motion strength, reward was given ran-
domly with a probability of /5. The monkeys’ choices and response times
(RTs) were recorded.

Generation of artificial datasets and firing rate plots. All analyses de-
scribed here were not only applied to the real LIP data but also to artificial
datasets that were designed to test the sensitivity and reliability of our
analysis techniques. Artificial data matched critical properties of the real
datasets, including number of trials and initial and final firing rates. For
the streak index (SI) analysis and for the maximum likelihood fits, the
initial and final firing rates were obtained from the real data using linear
regression. Spikes in 400 successive (1 ms) time bins were counted across
all trials, multiplied by 1000, and divided by the number of trials to obtain
rate estimates. Linear regression was applied, and the resulting rates as-
sociated with the first and the last time bins were taken as the initial and
final firing rates (A4, @and Ag,,,)- For the global likelihood ratio analy-
sis, we simply used the average firing rates during the first and last 40 ms.
For each real LIP dataset, we created one matching artificial ramping
dataset (with the same number of trials as in the real dataset) by gener-
ating Poisson spike trains following the rate function

t
Ara\mping(t) = Ainili;\l + (Aﬁna] - Ainilial) X ?

with T being the duration of the analyzed time interval (400 ms for the SI
analysis and the maximum likelihood fits and 300 ms for the global
likelihood ratio analysis) and ¢ ranging from 0 to T. The second artificial
dataset (artificial jumps) was created by generating Poisson spike trains
following the family of rate functions:

t <t
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t= tslcp ’

Ainitia
_ tial>
)\jumping(t) N {Aﬁna];

For each generated trial, #,, was randomly drawn from a uniform dis-
tribution ranging from 0 to T.

For the HMM analysis, we also generated two artificial datasets (arti-
ficial ramps and artificial jumps) for each real LIP dataset. The artificial
datasets had the same number of trials and the trials had the same lengths
as in the real dataset, but the spike trains were replaced by nonstationary
Poisson spike trains that were generated according to the following rules.
Because the average response of the LIP neurons during the first 200 ms
of a trial was not sensitive to the sensory stimulus (Bollimunta and Dit-
terich, 2012; see also Roitman and Shadlen, 2002; Churchland et al.,
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2008), the first 200 ms of each artificial spike train were generated by
using the average firing rate time course of the particular neuron, deter-
mined by counting spikes in 50 ms windows. After this, in the case of the
artificial ramps, the remaining duration of the trial was used to have the
firing rate ramp to average final firing rate of this neuron for this partic-
ular type of choice, as determined by the average spike count during the
last 50 ms of each trial ending with this choice. In the case of the artificial
jumps, a random time was drawn from a uniform distribution ranging
from 200 ms to the trial duration. Each neuron remained at its current
firing rate up to this random time and then jumped to its average final
firing rate for the particular choice.

All firing rates shown in Figures 2a, 54, 7b, and 8, b and ¢, have been
smoothed with a Gaussian kernel with an SD of 20 ms.

SI analysis. For obtaining the SIs, the spike counts in 16 successive
25 ms bins (or, alternatively, 10 successive 40 ms bins) were obtained for
each trial. We then calculated the median spike count in each of the 16
(10) bins across all trials. On a trial-by-trial basis, the spike counts in each
bin were compared with the corresponding median spike counts. If the
spike count was larger than the median, the symbol “1” was assigned to
the corresponding bin. If the spike count was smaller than the median,
the symbol “0” was assigned to the corresponding bin. If the spike count
was identical to the median, either a 0 or 1 were randomly assigned. We
then counted how often switches either from 0 to 1 or from 1 to 0
occurred in the resulting 16-digit (10-digit) string. If there are N
switches, one says that the string contains N + 1 runs. If the Os and 1s are
randomly arranged, the number of runs is expected to be drawn from a
distribution with mean p and SD o with

2mn

=1+
K m+n

and

3 /ZmnX(Zmn—m—n)
7= \/(m+n)2><(m+n—1)

with m and » being the number of 0s and 1s in the string (Horwitz and
Newsome, 2001). The SI is defined as (number of runs — w)/o and is
therefore expected to follow a distribution with 0 mean and an SD of 1 if
the 0s and 1s are randomly arranged. Such an arrangement is, for exam-
ple, expected when each spike train is an instantiation of the same
(potentially non-homogeneous) Poisson process. Conversely, if the trial-
averaged response shows a gradual increase in firing rate, but individual
trials are characterized by a sudden jump from a low firing rate to a high
firing rate at some random time, we expect fewer runs than in the case of
a random arrangement of Os and 1s and therefore a negative SI. A £ test
was used to determine whether the mean SI across trials was significantly
different from 0. For testing distributions of mean SIs across sessions or
neurons, a sign test was used to determine whether the median of the
distribution was significantly different from 0, and a Wilcoxon’s test was
used for comparing distributions because the data were no longer ex-
pected to follow normal distributions. To determine whether the real
data SIs were significantly closer to the results for a particular type of
artificial data than for the other type, we performed another Wilcoxon’s
test to compare the real data SIs with the midpoints between the results
for the two artificial datasets.

In contrast to Horwitz and Newsome (2001), who reported a single SI
based on all trials, we calculated an SI for each individual trial and ana-
lyzed its distribution across trials. Besides providing a single-trial mea-
sure, this has the advantage that the mean of the SI distribution across
trials is not expected to scale with the number of trials, whereas the
absolute value of the number reported by Horwitz and Newsome tends to
increase with the number of analyzed trials. Thus, the numbers reported
by Horwitz and Newsome cannot be directly compared with our mean
SIs, but what can be compared is how often the estimated SI significantly
deviates from 0.

Global likelihood ratios between a linear model and a step model. To test
whether the single-trial population spike trains are more consistent with
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a linear model or with a step model, we estimated the global likelihood
ratio for these two models. The linear model assumes that each trial is an
instantiation of the same non-homogeneous Poisson process with a lin-
ear rate change over time. The step model assumes that each trial is an
instantiation of non-homogeneous Poisson processes with common ini-
tial rate and common final rate and a rate jump at some random time,
which can be different across trials.

Let {#]} be the set of spike times recorded from neurons with the same
choice selectivity, where 7/ is the time of the ith spike in the rth trial. The
global likelihood ratio between a linear model and a step model can then
be written as

P({t}|Linear)
P({t}Step)

where P({t/}|Linear) is the global likelihood of observing the recorded
spike trains given the linear model, and P({¢/}|Step) is the global likeli-
hood of observing the recorded spike trains given the step model.

Assuming that each trial is an instantiation of the same non-
homogeneous Poisson process with a rate that changes linearly over time,
starting at a rate of A, ;;, and finishing at a rate of Ag,, the global
likelihood for the linear model based on N trials can be written as (Greg-
ory, 2005; Bollimunta et al., 2007)

P({t})|Linear)

= f f Lmear()‘mmab /\Fnal) X p()\mmab )\fna])d)\lmtwl d)‘fnab

Ainitial Afinal

where Li;cor(Ainitiap Afina) 18 the likelihood of observing the spike train
recorded in the rth trial given a linear model with parameters A,;;,; and
Aginap A0d P(Ainiar, Aginar) I8 the prior probability density of model pa-
rameters (see below). The likelihood was calculated by binning the spike
train with a resolution (At) of 1 ms. Given a rate function A(¢) of a
non-homogeneous Poisson process, the probability of observing a spike
in a given time bin at time # is given by p,u.(f) = A(f) X At, and the
probability of not observing a spike in the same time bin is therefore
Pro spike(t) = 1 = poire(£). The likelihood of observing a particular spike
train given rate function A(t) is therefore

L= [  xxAagx I1

all bins with spikes all bins without spikes

(1 = ) X Ap),

with #; being the time corresponding to a particular bin.

Assuming that each trial is an instantiation of a non-homogeneous
Poisson process with initial rate A, ;,;,, and final rate A, ,; but rate func-
tions that step from A . t0 Agyy at different times t,,,, the global
likelihood for the step model can be written as

P({t })|Step) J’ j JJ J S[ep muiab )\ﬁnal) t;[ep) X

Nt Afinal L By o

p()\mmal) )\ﬁn\l) { elep} dAmmal dAﬁn\l dtstep step .d step?

where LSth()\m,m], Afinab> stCP) is the likelihood of observing the spike
train recorded in the rth trial given a step model with parameters A, ;1>
Afinap and a step time of #,,,, for the rth trial, which can be calculated
according to the likelihood formula given above, and p(A; a1 Afinal,
{tep}) 1s the prior probability density of model parameters (see below).

Although the computation of the global likelihood for the linear model
is relatively straightforward, the step model requires integration over
N + 2 parameters and becomes computationally intractable even for
modest numbers of trials. We therefore estimated the global likelihood
ratio for only four trials at a time. Furthermore, we used a shorter 300 ms
time window ranging from 350 to 50 ms before saccade onset and sam-
pled the parameter space with a resolution of 2 Hz for the rates and a
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resolution of 10 ms for the step times. All model parameters were as-
sumed to be statistically independent, and the priors were set to uniform
distributions, excluding negative values, ranging from Ainitial — 50 Hz to
Ainiciar + 50 Hz for the initial firing rate, from Ag,,; — 50 Hz to Ag, +
50 Hz for the final firing rate, and from 0 to 300 ms for each step time
(relative to the beginning of the analyzed interval), with A;,,;;.; being the
average firing rate during the first 40 ms of the analyzed interval and A,
being the average firing rate during the last 40 ms. For each session, we
repeated this analysis 100 times, each time based on a different random
set of four trials. The analysis was always performed on the real LIP
dataset as well as two matched artificial datasets, one ramping and one
jumping, with initial rate A, ;;, and final rate A, ;.

A sign test was used to determine whether the median global log like-
lihood ratio (LLR) for a given session or across sessions was significantly
different from 0. A Wilcoxon’s test was used for comparing the distribu-
tions of median global LLRs across sessions. Another Wilcoxon’s test was
used to determine whether the global LLR for the real data was signifi-
cantly different from the midpoint between the global LLRs for the two
artificial datasets and therefore closer to one of them than to the other.

Maximum likelihood fits of non-homogeneous Poisson processes. To al-
low rate variations across trials and only test for the shape of the rate
function underlying individual spike trains, we also obtained maximum
likelihood estimates of both previously mentioned non-homogeneous
Poisson models (linear and step) on an individual trial basis. Likelihoods
were calculated according to the formula presented in the previous sec-
tion. If the rate function A(#) has a set of parameters, the combination of
parameters maximizing the likelihood is called the maximum likelihood
solution. We considered two different rate functions:

/\linear(t) = /\initial +AAXt

and

( t) mmal; 1< tstep
gkp )\fna]) t= tslep ’

with Aj;,...(f) having two free parameters, the initial firing rate A;
the firing rate slope AA, and A
initial firing rate A ;.
The maximum likelihoods associated with both models are L
and Lmax,step'

Because the two models have unequal numbers of parameters, a pen-
alty term has to be introduced when comparing the maximum likeli-
hoods. We used the Hannan—Quinn information criterion (HQIC),
which, based on classifying the artificial datasets, proved less biased than
the more commonly used Akaike information criterion (AIC) or Bayes-
ian information criterion (BIC) (Hannan and Quinn, 1979). The HQIC
values reported in this paper were calculated as

initial and
step(t) having three free parameters, the

, the final firing rate Ag,,;, and the step time t;,,.

max,linear

HQIC= —2XInL_,/n+2XkXIn(In(n))/n,

with k being the number of free parameters (two for the linear model and
three for the step model) and # being the number of data points (400 in
our case because each trial had 400 time bins). A smaller HQIC value
means that the associated model provides a better explanation for the
data.

For obtaining the maximum likelihood solutions, the maximum of the
likelihood function had to be found, which was done using a multidi-
mensional simplex algorithm, and was relatively straightforward for the
linear model when reasonable initial estimates were provided for the
model parameters. The fit of the step function is more problematic be-
cause it can easily get stuck in local maxima. To avoid this problem,
rather than directly fitting a step function, we applied an iterative fit of a
logistic function with an increasingly steeper slope:

AN
1+ exp(—a X (t — fy)

Mogistic() = Nipiiar +

with « being the slope parameter, which was initialized with a value of
0.025 and multiplied by a factor of 10 after each iteration. The last itera-
tion was run when « reached a value of at least 10, in which case it was set
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AA, and t,, after
each iteration were used as the initial parameter guesses for the next
iteration, ensuring a stable convergence of the fit. The only imposed
parameter constraints were that A(f) was not allowed to exceed 1000 Hz
and f,, had to remain inside the analyzed time interval.

A sign test was used to determine whether the median HQIC difference
(between the linear and the step model) across trials or across sessions
was significantly different from 0. A Wilcoxon’s test was used to compare
distributions of HQIC differences across sessions. Another Wilcoxon’s
test was used to determine whether the HQIC difference for the real data
was significantly different from the midpoint between the HQIC differ-
ences for the two artificial datasets and therefore closer to one of them
than to the other.

The MATLAB functions that were used for obtaining the maximum
likelihood estimates can be obtained from http://master.peractionlab.
org/software.

HMM analysis. For obtaining the HMM for a recording session, the
spike trains recorded during each trial were converted into an emission
sequence as explained in the Results, HMM analysis and changes of
mind, below. Because RT varied across trials, the emission sequences had
various lengths. The whole set of emission sequences was then used for
fitting the model using the Baum—Welch algorithm in MATLAB (Math-
Works; note that one has to be added to each of the emitted symbols in
this case because MATLAB does not accept 0 as a valid emission). Ten
different initial conditions for the emission matrix were used for a given
model order (number of states) to avoid getting stuck in alocal optimum,
and the model with the maximum likelihood was chosen as the best
model of this order. The transition matrix was always initialized with 0.99
along the main diagonal and all identical off-diagonal entries. The emis-
sion matrix was initialized such that the spiking probability of each neu-
ron in each state was randomly chosen to reflect a uniform distribution of
firing rates between 0 and 50 Hz.

Specifying the appropriate order of an HMM is a difficult problem.
Previous applications to the analysis of spike trains have circumvented
this problem by choosing an arbitrary number of states (Seidemann et al.,
1996; Jones et al., 2007; Miller and Katz, 2010). We took a more data-
driven approach. Note that the maximum likelihood cannot be used for
finding the optimal model order because it never decreases as the model
order increases. An attempt to use a strongly consistent estimator, like
the one proposed by Baras and Finesso (1992), failed because it almost
always limited the number of required states to two. We therefore used
the AIC, which applies a conservative penalty term for increasing model
order, for obtaining an upper bound for the model order and a series of
tests to further reduce the model order as necessary. The first two tests
were based on diagnostic tools proposed by McCane and Caelli (2004). A
sudden drop in the inverse condition number (ICN) of the augmented
matrix with increasing model order for an order that was not larger than
the one determined based on the AIC was taken as an indicator that the
order should not be chosen larger than the one just before the drop in the
ICN. The second test was based on examining the values of s; as defined
by McCane and Caelli (2004, their Eq. 19). Any s; of <0.9 for a given
model order was taken as an indicator of redundancy among the states
and therefore as a hint that a smaller model order should be chosen. Our
final test was designed to avoid overfitting. To this end, we randomly split
the emission sequences into two halves. We used one half for fitting the
model and the other half for calculating the likelihood. In contrast to the
maximum likelihood calculated from the same data that were also used
for fitting the model, this likelihood has a maximum for some model
order, indicating that models with more states start reflecting peculiari-
ties in the part of the data used for model fitting, which are not present in
the part of the data used for calculating the likelihood. If the peak in the
likelihood was observed for a model order that was smaller than the one
determined based on the AIC, the model order was reduced accordingly.

The resulting transition and emission matrices were used for con-
structing the HMM diagrams as shown in Figures 7a and 8a. Each entry
in the transition matrix reflects the probability of making a particular
state transition in each time step (2 ms in our case). Transition probabil-
ities of at least 0.001 (when rounded to three decimals) are indicated by
arrows. Entries in the emission matrix reflect the probabilities of a par-

to 10 for the final iteration. The best estimates of A,

initial>
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ticular neuron emitting a spike in each time step (2 ms) when the system
is in a particular state. Thus, multiplying these numbers by 500 results in
the firing rates shown in the diagrams. The determined transition and
emission matrices can then be used to decode the emission sequences of
individual trials (see Figs. 7e—i, 8d—i). The decoding results in a set of
posterior state probabilities as a function of time (shown as colored lines
in the figures). Consistent with previous work (Seidemann et al., 1996;
Jones et al., 2007; Miller and Katz, 2010), a posterior probability exceed-
ing 0.8 was taken as an indicator that the system was in one of the iden-
tified discrete states (marked by colored shaded areas in the figures).

Motion energy filters. To extract the time course of motion energy from
our visual stimuli, we used motion energy filters similar to the ones used
by Kiani et al. (2008) but with a slightly faster temporal response to shift
the preferred speed closer to the speeds used in our stimuli. The spatial
filters were

’ ! — 4 7}’7’2
filx",y") = cos*(a) X cos(4a) X exp( 20§>

fz(x'>}") = COS4(01) X sin(4a) X exp<—;?)
g

’
X

o= tan’1<f>.
o-f

g, was set to 0.05° to approximate the direction selectivity of MT neu-
rons. As in the study by Kiani et al. (2008), o was chosen as 0.35°. (x', y")
is a rotated coordinate system able to extract motion energy in different

preferred directions 6:
x" = cos(0) X x — sin(6) X y,
y" =sin(0) X x — cos(0) X y.

We always used three sets of filters whose preferred directions were
aligned with the three directions of coherent motion in the random-dot
stimulus. The temporal impulse responses were

1 (100 X t)?
31 5

g1(1) = (100 X £)* X exp(—100 X 1) X [

. 1 (100X #)?
(1) = (100 X 1)* X exp(—100 X 1) X [5 - #}
For each preferred direction, we constructed a pair of filters in space—
time quadrature ( f,g; + f,g, and f,g, — f,>) and convolved the stimulus
with the resulting kernels, extending from —0.7° to +0.7° in space and
from 0 to 0.2 s in time. The motion energy at a particular time point is
therefore determined by the preceding 200 ms of the stimulus. The re-
sults were squared and summed and then collapsed across space to obtain
the motion energy in a particular direction (6) as a function of time. The
time course of the net motion energy supporting a particular choice was
calculated as the difference between the motion energy of the stimulus
component supporting this choice and the average motion energy of the
other two stimulus components.

Results

We trained three rhesus monkeys to perform a three-choice ver-
sion of the random-dot motion direction discrimination task,
which is illustrated in Figure 1a. While looking at a fixation spot,
the monkeys watched a random-dot motion stimulus that had
three embedded components of coherent motion with directions
that were all separated by 120°. The strengths of the three motion
components were randomly varied from trial to trial. The mon-
keys were trained to identify the strongest component of motion
and to report their choice by making a saccade to the target closest
to the identified direction (of three available targets). The viewing
duration was under the animal’s control, and the monkey re-
ceived a fluid reward for choosing the correct target. For the



12688 - J. Neurosci., September 12,2012 - 32(37):12684 12701

a

900 [

800 [

Mean RT [ms]

600 [

¢

0

Net motion strength (difference betw. max. and average of the other two) [%]

Firing rate

10

20

30 40

Figure1.

Time

Individual spike trains
of 3 decision-related neurons
with the same choice selectivity

Combined spike train as a proxy
for the single trial activity of the
pool of decision-related neurons
with this choice selectivity

(on

Bollimunta et al. ® Neural Dynamics of Choice

: [ ]
« :
Q
2 osf : R
(5} : o
3 : B
[ N R
£ ] 3
9] F FEEO
8 HER
o
o -
) é
c 06 L
o 1
3
o
[
= L
[
2
ks
Q
X 04r
i L i . i . L ) . )
0 10 20 30 40

Firing rate [Hz]

Target in RF chosen
Target outside RF chosen|

Firing rate

-300

-200

-100

Time relative to saccade onset [ms]

Width of time bin (2 ms)

—> <«

0|1]2|1]1]0]|3

randomly chosen

between 2 and 3

Spike train of Neuron 1

Spike train of Neuron 2

Spike train of Neuron 3

Emission sequence used
for HMM analysis

Experimental task, behavior, average firing rates, and spike train preparation. a, Three-alternative forced-choice motion direction discrimination task: monkeys had to maintain fixation

while watching a three-component random-dot motion stimulus. The task was to identify the strongest component of motion in the stimulus and to make a goal-directed eye movement to the
target (red) closest to the identified direction. Choices and RTs were measured. We recorded simultaneously from multiple LIP neurons with exactly one of the targets in (Figure legend continues.)
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analyses presented here, it is not particularly important that we
used a three-component stimulus. In fact, the monkeys’ behavior
suggests that they would have made similar choices if just pre-
sented with a single component motion stimulus with a net di-
rection identical to the direction of the strongest component in
our stimulus and a coherence that is given by the difference be-
tween the coherence of the strongest component in our stimulus
and the average coherence of the other two components. We call
this difference the “net motion strength.” Analyses that take ad-
vantage of the simultaneous control of sensory evidence for and
against particular choices, as provided by the three-component
stimulus, have been presented previously (Bollimunta and Dit-
terich, 2012).

The proportion of correct choices as a function of net motion
strength, ranging from chance performance for zero net mo-
tion strength to almost perfect choice behavior for 40% net mo-
tion strength, is shown in Figure 1b. Different colors represent
different combinations of the strengths of the three components
in our stimulus that could give rise to the same net motion
strength. The mean RTs, ranging from ~600 ms for 40% net
motion strength to ~850 ms for non-informative stimuli (zero
net motion strength), are shown in Figure 1¢. While the monkeys
performed this task, we recorded extracellularly from multiple
LIP neurons that had exactly one of the choice targets in their RF,
using a multielectrode drive. An example of how these RFs might
have been arranged in a particular experimental session is shown
in Figure 1a. The RFs were mapped using a memory-guided sac-
cade task, and only neurons with spatially selective activity during
the memory period were recorded. We are therefore focusing on
the same subpopulation of LIP neurons that have been studied in
previous work on perceptual decision-making (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002; Huk and Shadlen,
2005; Churchland et al., 2008; Law and Gold, 2008; Rorie et al.,
2010; Bennur and Gold, 2011). The average firing rate of the
recorded LIP neurons as a function of whether the monkey made
a saccade to the target inside the RF (red trace) or to one of the
targets outside the RF (blue trace) is shown in Figure 1d. Re-
sponses are aligned with the time of saccade onset, indicated by
the dashed vertical line. The red trace indicates that, on average,
LIP neurons showed a gradual increase in their firing rate during
the last 400 ms up to ~40 ms before a saccade to the target inside

<«

(Figure legend continued.)  each RF (yellow ellipses). Different neurons could either have the
same target or two different targets in their RFs. b, Accuracy: relative frequency of correct
choices asa function of net motion strength (difference between the coherence of the strongest
component and the average of the other two coherences). Different colors reflect different
combinations of the two weaker coherences (different combinations of coherences could result
in the same net motion strength). All points within a particular gray bar reflect the exact same
net motion strength and have only been shifted horizontally for visualization purposes. The
error bars reflect 95% confidence intervals, and the dashed horizontal line indicates chance
performance. b— d are adapted from Bollimunta and Ditterich (2012) with permission. ¢, Mean
RTs as a function of net motion strength; same conventions as in b. d, Average LIP firing rate as
a function of whether the target in the RF (red) or one of the targets outside the RF (blue) was
chosen. Responses are time-locked to saccade onset (dashed vertical line). The shaded areas
indicate 95% confidence bands. e, Hypothetical trial-averaged ramping response (red) result-
ing fromindividual trials with ramping responses (blue). f, Hypothetical trial-averaged ramping
response (red) resulting from individual trials with jumping responses (blue; fast transitions
froma low to a high firing rate state at different times). g, A combined spike train s constructed
from three simultaneously recorded single-trial spike trains for obtaining a single-trial estimate
of the population response. This approach is used for the Sl analysis at the population level and
for comparisons of non-homogeneous Poisson models. h, Example of constructing an emission
sequence from three simultaneously recorded spike trains. These emission sequences are used
for the HMM analysis.
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the RF of the recorded neuron. These non-single-trial-related
results have previously been reported by Bollimunta and Ditter-
ich (2012).

However, the shown trace is the result of averaging >9000
individual decisions. It is easy to demonstrate that very different
behavior at the single-trial level can lead to very similar results
after averaging across trials. The thin blue lines in Figure 1e show
hypothetical single-trial firing rate functions. In this case, all of
the functions are noisy versions of a linear ramp. The average
firing rate across trials, as indicated by the thick red line, is again
a ramp-like function. A quite different situation is illustrated in
Figure 1f. In this case, the thin blue lines all reflect noisy versions
of a sudden jump from a low to a high firing rate state at random
times. The average firing rate across trials is again a ramp-like
function (thick red line). Thus, the average firing rate across
many trials does not reveal the neural dynamics of individual
decisions. To address the question of how the activity of pools of
decision-related LIP neurons changes during individual deci-
sions, we will now focus on the analysis of spike trains that have
been recorded during individual trials.

SI analysis
We first focus on the question of how the winning pool of
decision-related LIP neurons makes its transition from an un-
committed (low firing rate) to a committed (high firing rate)
state. To this end, we analyzed the data from sessions in which we
had recorded from at least two neurons with the same choice
selectivity (same target in the RF). Averaged across trials, these
neurons had to gradually increase their firing rate during the last
400 ms before a saccade to the target in the RF to ensure that we
were looking at subpopulations of neurons with a trial-averaged
response that was representative of the population. A few neu-
rons, which did not show a ramping response until later in the
trial (e.g., 200 ms before the saccade), were thus excluded from
this analysis. Only trials that resulted in choosing the target inside
the RF were analyzed, meaning that the recorded neurons were
part of the winning pool, and all spikes that were emitted during
the last 400 ms before saccade onset were extracted for analysis.
Eighteen datasets had the required properties. The number of
simultaneously recorded neurons with the same choice selectivity
was either two or three, and the number of analyzed trials per
session ranged from 79 to 360. Because we were interested in the
dynamics of the population response and because the first anal-
ysis techniques that will be described here operate on a single
spike train, we first generated a combined spike train for each trial
by collapsing across individual neurons as illustrated in Figure 1g.
This combined spike train is our best single-trial estimate of the
response of the pool of LIP neurons with the same choice selec-
tivity as the recorded exemplars. On average, the firing rate of the
combined spike trains increased by 71 spikes/s during the ana-
lyzed interval, ranging from 41 to 108 spikes/s across datasets.
This corresponds to an average increase of 34 spikes/s per re-
corded neuron, ranging from 20 to 54 spikes/s across datasets.
The idea of the analysis that will be presented in the following
was to obtain the SI for each single-trial LIP spike train and to
compare the distribution of SIs with those obtained from two
artificially created datasets. These were tailored to match the real
LIP dataset in three aspects: number of trials, average firing rate
400 ms before saccade onset, and average firing rate at the time of
saccade onset. The first artificial dataset was generated under the
assumption that each trial was an instantiation of the same non-
homogeneous Poisson process with a linear change in firing rate
from the initial to the final rate as determined from the real data.
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The second artificial dataset was generated under the assumption
that each trial was an instantiation of a non-homogeneous Pois-
son process whose rate stepped from the initial to the final rate at
some random time, with a uniform distribution of step times.
The SI was used by Horwitz and Newsome (2001) to analyze
spike trains recorded from SC. It analyzes local spike count fluc-
tuations around the median across trials and assesses whether
these fluctuations are completely random or whether they are
systematically grouped (for details, see Materials and Methods).
If the fluctuations are random, the SI is expected to follow a
distribution with zero mean. This would, for example, be the case
if each trial were an instantiation of the same non-homogeneous
Poisson process. In contrast, if individual trials were character-
ized by a step-like transition from a low to a high firing rate, we
would expect a distribution of SIs with a negative mean. In con-
trast to Horwitz and Newsome (2001), who calculated a single SI
across all trials, we calculated an SI for each trial and analyzed the
distribution across trials. This has the advantage of having access
to a single-trial measure, and the mean of the SI distribution
across trials is not expected to change with the number of avail-
able trials, which makes it easier to compare recording sessions
with different numbers of trials.

The ST analysis of an example session with three simultane-
ously recorded neurons is illustrated in Figure 2. The blue line in
Figure 2a shows the average firing rate of the combined spike
trains across trials. A linear fit (black dashed line) was used to
estimate the initial (29 Hz) and the final (107 Hz) firing rate.
Please note that these rates have not been divided by the number
of contributing neurons. The raster plot of the real LIP data is
shown in Figure 2b. The raster plots of the artificial ramping data
and the artificial jumping data are shown in Figure 2, ¢ and d.
Note the somewhat streaky appearance of the artificial jump data.
The green and red lines in Figure 2a verify that the average firing
rates of both artificial datasets match the average firing rate of the
real data. The streak plots in Figure 2e—g illustrate how the SI is
obtained. Each trial is subdivided into 16 successive bins with a
width of 25 ms, and the number of spikes in each of these bins is
counted. The spike count is then compared with the median spike
count in this particular bin across trials. A spike count that is
smaller than the median is marked white or blue (on alternating
trials), and a spike count that is larger than the median is marked
black or red. If the spike count happened to be identical to the
median, a color was randomly assigned. The SI is based on the
number of color changes during a trial. Figure 2i shows the dis-
tribution of SIs across trials for the artificial ramp data. The dis-
tribution is expected to be similar to a normal distribution with
zero mean and an SD of 1, as represented by the dotted red line.
The actual mean of the distribution (indicated by the green ar-
row) was —0.02, which was not significantly different from 0
(p = 0.76). Figure 2j shows the distribution of SIs for the artificial
jump data with a mean of —0.39 (red arrow), which was signifi-
cantly different from 0 (p = 9 X 10 ~°). The distribution of SIs for
the real LIP data is shown in Figure 2/ with a mean of +0.08 (blue
arrow; not significantly different from 0; p = 0.32).

Before assessing the SIs of the real LIP data, we made sure that
three different instantiations of both artificial datasets were clas-
sified appropriately, meaning that the mean SI for the artificial
ramp data was not significantly different from 0 (p > 0.05),
whereas the artificial jump data had a negative mean SI that was
significantly different from 0 (p < 0.05). This criterion was met
for 15 of the 18 analyzed sessions. The distributions of mean SIs
across sessions for real LIP data (blue), artificial ramp data
(green), and artificial jump data (red), using an analysis bin width
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of 25 ms, as used previously by Horwitz and Newsome (2001), are
shown in Figure 3a. Stars mark mean SIs that were significantly
different from 0 (p < 0.05). By virtue of our control criterion, this
had to be the case for all of the artificial jump datasets and for
none of the artificial ramp datasets. Nine of the real LIP datasets
had a mean SI that was not significantly different from 0, but six
of them had a positive mean SI that was significantly different
from 0. Thus, a number of sessions had significantly more me-
dian crossings than would be expected from a random arrange-
ment. We will return to this surprising observation in Discussion.
The colored arrows indicate the medians of the across-session
distributions, which were —0.38 for the artificial jump data (sig-
nificantly different from 0; p = 6 X 10 ~3), +0.01 for the artificial
ramp data (not significantly different from 0; p = 0.79), and
+0.08 for the real LIP data (not significantly different from 0; p =
0.30). The SIs for the real data were significantly to the right of the
midpoints of the SIs for the two artificial datasets (p = 0.0001)
and therefore closer to the SIs for the artificial ramps. However,
the median SI for the real data was not only significantly larger
than that for the artificial jump data (p = 6 X 10 ) but also than
that for the artificial ramp data (p = 0.05). Potential reasons for
this significant rightward shift, in particular one that prompted
us to repeat the analysis with a different bin width, will be ad-
dressed later in Discussion.

The results of an SI analysis using a bin width of 40 ms (instead
of 25 ms) are shown in Figure 3b. Sixteen of the 18 sessions met
the above-mentioned inclusion criteria. Twelve of the real LIP
datasets had a mean SI that was not significantly different from 0.
Four sessions had a negative SI that was significantly different
from 0 (marked with blue stars). The median SI for the artificial
jump data was —0.35 (significantly different from 0; p = 3 X
10 7?), +0.01 for the artificial ramp data (not significantly differ-
ent from 0; p > 0.99), and —0.08 for the real LIP data (not
significantly different from 0; p = 0.21). The real LIP data were
significantly different from both types of artificial datasets (p =
0.03 for the artificial ramps and p = 0.0005 for the artificial
jumps) and significantly to the right of the midpoints between the
two artificial datasets (p = 0.05). This is a more reasonable result
because any variability in the rate function across trials should
place the SI of the real data to the left of the SI for the artificial
ramps (no variability in the rate function across trials). However,
the results indicate that the real LIP data, at the population level,
were more similar to artificial ramps than to artificial jumps.

To be able to make a more direct comparison with the results
reported by Horwitz and Newsome (2001), which were based on
SU recordings in the SC, we also attempted an analysis at the
single-neuron level, following the same procedure as for the com-
bined spike trains. This turned out to be more challenging, and
only 10 of the 33 neurons that had contributed to the SI results at
the population level (when using a bin width of 25 ms) had prop-
erties that allowed a reliable classification of the artificial datasets
with matched properties. The results are shown in Figure 3¢; stars
again mark mean SIs that were significantly different from 0 (p <
0.05). Five of the 10 analyzed neurons had a mean SI that was not
significantly different from 0, one had a negative mean SI that was
significantly different from 0, and four had a positive mean SI
that was significantly different from 0. The colored arrows again
indicate the medians of the across-neuron distributions, which
were —0.27 for the artificial jump data (significantly different
from 0; p = 0.002), —0.02 for the artificial ramp data (not signif-
icantly different from 0; p = 0.75), and —0.05 for the real LIP data
(not significantly different from 0; p = 0.75). The median Sls for
the real data and the artificial ramp data were not significantly
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Figure2.  Slanalysisat the population level: example session. a, Firing rates as a function of time: real LIP data (blue), linear fit used for extracting initial and final firing rates (black dashed line), artificial ramp

data (green), and artificial jump data (red). b— d, Raster plots of the real LIP data (b), artificial ramp data (c), and artificial jump data (d). e~ g, Streak plots of the real LIP data (), artificial ramp data (), and artificial
jump data (g): spikes have been counted in 16 successive 25 ms bins. Each line reflects a trial, and the colors indicate whether the spike count was above (black or red) or below (white or blue) the median spike
countacross trials. The combinations black/white and red/blue are used on alternating trials. h—j, Sl distributions across trials for the real LIP data (h), artificial ramp data (), and artificial jump data (f). The colored
arrows indicate the means of the distributions, the dashed vertical line marks zero, and the red dotted line shows a standard normal distribution.

different from each other (p = 0.56), whereas there was a signif-
icant difference between the real data and the artificial jump data
(p = 0.002). The midpoint test, however, did not quite reach
significance (p = 0.08). The results for an analysis bin width of

40 ms are shown in Figure 3d. Eight of 35 neurons met the inclu-
sion criteria. Six neurons had a mean SI that was not significantly
different from 0, one was negative, and one was positive. The
median SIs across neurons were —0.29 for the artificial steps (p =
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0.008), +0.02 for the artificial ramps (p = a
0.45),and +0.01 for the real LIP data (p > 12
0.99). The median SI for the real data was
notsignificantly different from the one for
artificial ramps (p = 0.94) but signifi-
cantly different from the one for artificial
jumps (p = 0.02) and significantly to the
right of the midpoint between the two ar-
tificial datasets (p = 0.05). Thus, the re-
sults at the single-neuron level were ,

similar to those found at the population E EH
level and suggest that both single LIP neu- ol e
rons with a trial-averaged ramping re-

sponse as well as the population undergo
gradual changes in firing rate during indi-  C ,
vidual decisions.

# of sessions
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Global likelihood ratio between a linear
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Because the SI analysis still relies on a
comparison of individual trial data with
the data across trials and because it pro- .
vides a rather indirect measure, we also
aimed at a more direct test of competing

# of neurons
e

2

models: a linear model, assuming that L [H]

each spike train is an instantiation of the B
same non-homogeneous Poisson process

with the rate changing linearly over time,  Figure3.

and a step model, assuming that each
spike train is an instantiation of a non-
homogeneous Poisson process whose rate
steps from a common initial rate to a com-
mon final rate at some random time (dif-
ferent across trials). Poisson models were chosen for
computational tractability, because cortical spike trains are gen-
erally believed to be Poisson-like (Softky and Koch, 1993;
Shadlen and Newsome, 1998). In contrast to Maimon and Assad
(2009) who reported substantially increased regularity in LIP
spiking, our data are mostly consistent with Poisson statistics.
When fitting gamma distributions to the interspike interval dis-
tributions (without applying any rate correction), the median
shape parameter (1.16) was indistinguishable (p = 0.55, Wilcox-
on’s test) from that predicted by our artificial ramp data based on
Poisson spiking (1.17) when analyzing the single-trial combined
LIP spike trains, which are used for all of our Poisson model
comparisons. The value slightly exceeds 1 as a result of the non-
stationarity. When analyzing our SU spike trains, the median
shape parameter (1.35) was significantly (p = 0.004, Wilcoxon’s
test) but only slightly larger than that predicted by our artificial
ramp data based on Poisson spiking (1.10). In contrast, Maimon
and Assad reported a median (rate-corrected) shape parameter of
1.95 for their LIP neurons. Our data are much closer to what these
authors reported for middle temporal area MT/medial superior
temporal area MST (1.23). The use of Poisson-based models is
therefore justified.

We set out to estimate the global likelihood ratio between the
two non-homogeneous Poisson models. Ideally, the computa-
tion should be performed across all trials, but because the likeli-
hoods have to be computed for all possible parameter
combinations and because the possible combinations of step
times explode as more and more trials are being added, we took a
simplified approach to make the problem computationally trac-
table. First, we only used a 300 ms time window, ranging from

bin width of 40 ms.
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350 to 50 ms before saccade onset. Second, we only computed the
global likelihood ratio for four trials at a time, but we repeated
this calculation 100 times for each session. Thus, for each session,
we made 100 random draws of four trials each from the real LIP
data, from the artificial ramp data with matched initial and final
firing rates, and from the artificial jump data with again matched
initial and final firing rates and a uniform distribution of step
times. Additional details can be found in Materials and Methods.

The results for one example session are shown in Figure 4a. The
blue histogram shows the distribution of global LLRs across the 100
random draws for the real LIP data. The green histogram shows the
same for the artificial ramp data and the red histogram for the arti-
ficial jump data. Negative values (to the left of the dashed vertical
line) indicate that the step model provided the better explanation for
the data. Positive values (to the right of the dashed vertical line)
indicate that the linear model provided the better explanation for
the data. Because the natural logarithm was used, a value of +2.3
(+4.6) would indicate that the data are 10 (100) times more likely
according to the linear model compared with the step model. The
colored arrows mark the medians of the distributions: +1.39 for
the real LIP data (significantly different from 0; p = 4 X 10 %),
+1.77 for the artificial ramp data (p = 4 X 10 ~*%), and —1.88 for
the artificial jump data (p = 4 X 10~®). Thus, in this case, both
the real LIP data and the artificial ramp data were better explained
by the linear model, whereas the artificial jump data were better
explained by the step model.

When analyzing the data across sessions, we only included
sessions with a positive median global LLR that was significantly
different from 0 (p < 0.05) for the artificial ramp data and a
negative median global LLR that was also significantly different
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Figure 4.  Global likelihood ratio between a linear model and a step model. a, Example

session. One hundred random draws of four trials each were analyzed. The histograms shows
the distributions of global LLRs between the linear and the step model for the real LIP data
(blue), the artificial ramp data (green), and the artificial jump data (red). Negative values (to the
left of the dashed vertical line) indicate that the step model provided the better explanation.
Positive values (to the right of the dashed vertical line) indicate that the linear model provided
the better explanation. The colored arrows indicate the medians of the distributions. b, Median
global LLRs at the population level across experimental sessions: real LIP data (blue), artificial
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from 0 for the artificial jump data to ensure that our analysis
method was sensitive enough to discriminate between both mod-
els given the initial and final firing rates of this particular session.
Twelve of the 18 analyzed sessions met this criterion. Of those,
nine had a positive median global LLR that was significantly dif-
ferent from 0 (p < 0.05) for the real LIP data, indicating that the
linear model provided the better explanation for the single-trial
combined LIP spike trains. The LIP data from the remaining
three sessions had a median global LLR that was not significantly
different from 0, indicating that the data were inconclusive and
neither better explained by the linear model nor by the step
model. The results are shown in Figure 4b. The stars mark median
global LLRs that were significantly different from 0. The colored
arrows mark the medians of the global LLR distributions across
sessions. Those were +0.83 for the real LIP data (significantly
different from 0; p = 0.006), +1.52 for the artificial ramp data
(p=0.0005),and —1.86 for the artificial jump data (p = 0.0005).
The results for the real data were significantly to the right of the
midpoints between the two artificial datasets (p = 0.005). Thus,
overall, the LIP spike trains were better explained by the linear
model, which is consistent with the result of the SI analysis. How-
ever, in addition to the distribution for the real LIP data being
different from the distribution for the artificial jump data (p =
0.0005), the distribution for the real LIP data and the distribution
for the artificial ramp data were also different from each other
(p = 0.001). The real data were therefore more ramp-like than
jump-like but not indistinguishable from the artificial ramp data.
This, however, is not too surprising. Even in the case of the LIP
activity being the result of a perfect integration of sensory evi-
dence, the resulting activity profiles would not be expected to be
perfectly linear ramps attributable to fluctuations in the momen-
tary evidence and potentially attributable to integration of some
noise. Another possibility, and we will see some evidence for this
later, is that some firing rate transitions are indeed jump-like.
However, those would clearly have to be the minority.

We also repeated this analysis at the single-neuron level,
which again proved more challenging: only 9 of the 26 neurons
that had contributed to the results at the population level had
properties that allowed a reliable classification of the artificial
ramp and jump data. The results are shown in Figure 4c. Six LIP
neurons were more consistent with the linear model, and two
were more consistent with the step model. The median global
LLR (+0.55) was not significantly different from 0 (p = 0.18),
not significantly different from that of the artificial ramp data
(+1.00; p = 0.07) but significantly different from that of the
artificial jump data (—1.02; p = 0.004). The midpoint test, how-
ever, did not reach significance (p = 0.13), and the results there-
fore do not provide a clear answer whether the SU responses are
closer to ramping or stepping responses. The absolute values of
the median global LLRs associated with the artificial data are
smaller than the ones that had been observed for the combined
spike trains (+1.52 and —1.86), indicating that having access to
at least two simultaneously recorded neurons provides increased
statistical power for discriminating between models. The results
at the SU level are therefore not as clear cut as at the population
level.

<«

ramp data (green), and artificial jump data (red). Median global LLRs that were significantly
different from 0 (p << 0.05) are marked with stars. The medians of the distributions are indi-
cated by the colored arrows. ¢, Median global LLRs at the single-neuron level across neurons:
same format as b.
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Maximum likelihood fits of non-homogeneous

Poisson processes

The models used for the global likelihood ratio analysis still im-
posed a common firing rate constraint. Given that the underlying
rates might vary across trials, we also aimed at a more indepen-
dent classification of the shape of the firing rate function under-
lying individual spike trains. To this end, we subjected each
single-trial combined spike train to maximum likelihood fits of
two different non-homogeneous Poisson models: one assuming a
linear change of the firing rate over time, the other one assuming
a firing rate step. Initial and final firing rates as well as the step
time were free parameters in each single fit. Thus, only the shape
of the underlying rate function was constrained. It turned out
that, even when working with artificial ramp data, direct model
comparisons based on the maximum likelihood were heavily bi-
ased toward the step model because of its extra degree of freedom
(three instead of two parameters). We therefore had to introduce
a penalty term and used the HQIC (Hannan and Quinn, 1979),

which turned out to be less biased when classifying the artificial
datasets than the more commonly used AIC or BIC.

The general approach was similar to the SI analysis. An exam-
ple session with two simultaneously recorded neurons is shown
in Figure 5. Figure 5b shows one example of a combined LIP spike
train and the two best-fitting non-homogeneous Poisson models
(green, linear; red, step). In this case, the linear model had the
lower HQIC, indicating that it provided the better explanation of
the data. An example spike train that was better explained by the
step model is shown in Figure 5¢. The blue line in Figure 5a shows
the average firing rate of the LIP data (combined spike trains). A
linear fit (black dashed line) was again used to estimate the initial
(59 Hz) and the final (165 Hz) firing rate. Note that these rates
have again not been divided by the number of contributing neu-
rons. The green and red lines show the average firing rates of the
two artificial datasets. The raster plot of the real data is shown in
Figure 5d. Figure 5, e and f, shows the raster plots of the artificial
ramp and jump data, respectively. The distribution of HQIC dif-
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ferences between the linear and the step model across trials for the
artificial ramp data is shown in Figure 5h. This dataset should be
better explained by the linear model because it has been generated
according to a linear model. The median HQIC difference was
—0.0020 and significantly different from 0 (p = 0.04). A negative
HQIC difference indicates that the linear model provides the
better explanation. An HQIC difference of —0.0035 (—0.012)
would indicate that the data are 2 (10) times more likely accord-
ing to the linear model compared with the step model. Figure 5i
shows the distribution of HQIC differences for the artificial jump
data. In this case, the step model should be providing the better
explanation. The median HQIC difference was +0.0020 (signif-
icantly different from 0; p = 0.02). The distribution of HQIC
differences for the real LIP data is shown in Figure 5¢. The median
was —0.0046 (p = 7 X 10 1%), indicating that, on average, the
LIP spike trains were better explained by the linear model than by
the step model.

The direct model comparison based on maximum likelihood
fits turned out to be more challenging than the previous analyses.
Again, we required that three instantiations of both artificial da-
tasets were classified correctly, meaning that the median HQIC
difference had to be negative and significantly different from 0
(p < 0.05) for the artificial ramp data and positive and signifi-
cantly different from 0 (p < 0.05) for the artificial jump data. Our
reasoning was that, if the analysis method cannot reliably classify
the artificial datasets that were matched in number of trials and
firing rates to the real data but were otherwise perfect implemen-
tations of linear ramps and steps, respectively, we cannot expect it
to provide a reliable classification of the real data. Only four of
our sessions had properties (number of trials and combination of
initial and final firing rates) that allowed a reliable classification
of the artificial datasets. The results for these sessions are shown
by the bar graphs in Figure 6 (“reliable” sessions). Like in the case
of the artificial ramp data, but unlike the artificial jump data, the
median HQIC differences for the real LIP data were all negative
and significantly different from 0 (p values ranging from 7 X
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10 ~"° to 0.0005; indicated by stars). For the purpose of statistical
comparisons, we also looked at the distributions across all ses-
sions. These are shown by the line plots in Figure 6. The colored
arrows mark the medians of these distributions. The median
HQIC differences were —0.0021 for the real LIP data (signifi-
cantly different from 0; p = 0.0001), —0.0019 for the artificial
ramps (significantly different from 0; p = 8 X 107°), and
+0.0006 for the artificial jumps (not significantly different from
0; p = 0.81). This indicates that the HQIC was still slightly biased,
which probably explains the small number of sessions that passed
the inclusion criteria for reliable sessions and therefore shows the
importance of using artificial control data for verifying the clas-
sification performance. The median HQIC difference for the real
LIP data was not significantly different from that for the artificial
ramps (p = 0.53) but significantly different from that for the
artificial jumps (p = 0.009) and significantly to the left of the
median midpoint between the two artificial datasets (p = 0.03).
This demonstrates that, overall, even without rate restrictions,
the linear ramp model provides a better explanation of the LIP
data than the step model. The result is therefore consistent with
the outcome of the previous analyses. All of them suggest that,
given a trial-averaged ramping response, the majority of single-
trial LIP spike trains are also more consistent with a gradual than
a sudden firing rate change.

HMM analysis and changes of mind

The analyses that have been discussed so far were limited to si-
multaneous recordings from neurons with the same choice selec-
tivity. Furthermore, the recorded neurons had to be part of the
winning pool, and only the last 400 ms of each trial were analyzed.
To be able to also analyze simultaneous recordings from neurons
with different choice selectivity (different targets in their RFs)
and trials resulting in different choices and with different lengths,
we made use of HMMs. The original idea behind HMM analysis
is that a neural system can be described by a limited set of discrete
states. Although these states cannot be directly observed, the
spike pattern that is emitted by the neurons is modulated by the
current state. In particular, the HMM used here assumes that
each state is associated with a set of firing rates for each of the
recorded neurons and that the neurons generate Poisson spike
trains with these rates. Each state is further associated with a set of
transition probabilities to other possible states. These transition
probabilities are not influenced by the history of how the system
arrived at the current state. To be able to apply HMM analysis,
each single-trial set of spike trains has to be converted into an
emission sequence. This process is illustrated in Figure 1h. The
whole trial (from motion stimulus onset to saccade onset) was
subdivided into 2 ms bins. If none of the recorded neurons had
spiked in a given bin, the emitted symbol was set to 0. If exactly
one of the neurons had spiked in a given bin the emitted symbol
was set to the ordinal number of the neuron that had spiked. If
multiple neurons had spiked in the same bin, one of the spiking
neurons was picked randomly. The bin width of 2 ms was chosen
to achieve a good compromise between length of the emission
sequences (shorter is better because of faster model identifica-
tion) and losing spikes because of “simultaneous” firing. The
emission sequences are then used to find the HMM parameters (a
set of firing rates for each state as well as a matrix of state transi-
tion probabilities) using the Baum—Welch algorithm. This algo-
rithm assumes that the number of states in the model is known.
Estimating the number of states in an HMM, the so-called “order
estimation problem” is a difficult problem. In previous applica-
tions of HMM s to neural data, the model order was picked more
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Figure7. HMManalysis: firstexample session. a, Identified HMM with four states based on a simultaneous recording from two LIP neurons with different choice selectivity. Each stateis associated

with a state number (top), a color (red/green/orange/blue), and two firing rates (black, FR of T2-selective neuron; white, FR of T3-selective neuron). Arrows indicate state transitions with
probabilities of at least 0.001 (when rounded to 3 decimals). Thicker arrows reflect higher transition probabilities. State 1 (top left, double circle) is the initial state on each trial. The two states at the
bottom are associated with T2 and T3 choices, respectively. b, Approximate correspondence between states and trial-averaged firing rates: average firing rates of the T2-selective (magenta) and the
T3-selective (gray) neuron for T2 (solid lines) and T3 (dashed lines) choices. The colored, filled circles with corresponding numbers show how the HMM states can be approximately mapped onto
these average firing rate responses. ¢, Timing of trials with a 1— 0 — 4 state sequence: significant correlation between the transition duration and RT. The dashed red line shows the linear regression.
d, Timing of trials with a 1— 02 state sequence: significant correlation between the transition duration and RT. The dashed red line again shows the linear regression. e~i, Examples of decoded
individual trials. The top row shows the single-trial spike train of the T2-selective neuron, and the bottom row shows the spike train of the T3-selective neuron. The colored lines indicate the
probabilities of being in any of the four identified states of the HMM. Probabilities exceeding 0.8 are marked with shaded areas. We refer to these time intervals as the system being in one of the
discrete states. White time intervals (without any colored shading) are referred to as state transitions. e, f, Examples of T2 choices with a 1-0—4 state sequence. g, Example of a T3 choice with a
1-0-2 state sequence. h, i, Examples of T3 choices involving a change of mind: the system spent some time in State 4, the state associated with T2 choices, before switching to State 2. h shows an

example of a slow change of mind, whereas i shows an example of a fast change of mind.

or less arbitrarily (Radons et al., 1994; Abeles et al., 1995; Seide-
mann et al., 1996; Gat et al., 1997; Jones et al., 2007; Miller and
Katz, 2010). We used a more data-driven approach, which is
explained in detail in Materials and Methods.

The model parameters were inferred from the full set of trials
(all possible choices). Figure 7a shows the HMM for one example
session, a simultaneous recording from two neurons with different
choice selectivity (76 trials). This is the session that required the
smallest number of states (four), and it is therefore particularly
straightforward to interpret. The HMM always starts in State 1 (top
left, double circle). Possible state transitions with probabilities of at
least 0.001 (rounded to three decimals) are indicated by arrows.
Thicker arrows indicate higher transition probabilities, the numbers
next to the arrows. The two numbers at the bottom of each state are
the associated firing rates of the two neurons. The black number
shows the firing rate of the neuron that was selective for choosing

Target 2 (“T2 choice”), the white number the firing rate of the neu-
ron that was selective for choosing Target 3 (“T3 choice”). Asit turns
out, the states can be approximately mapped onto trial-averaged
firing rates. Figure 7b shows the average firing rate of both neurons
(magenta, T2-selective neuron; gray, T3-selective neuron) for both
T2 (solid lines) and T3 choices (dashed lines), aligned with the time
of saccade onset. State 1 is the initial state and therefore reflects the
firing rates of both neurons at the beginning of the trial before
the rates split according to choice. State 2 approximately maps
onto the average firing rates of both neurons ~120 ms before
a saccade indicating a T3 choice. We therefore call it the state
associated with T3 choices. State 3 approximately maps onto
the average firing rates ~260 ms before a saccade to T3. State
4 approximately maps onto the average firing rates ~130 ms
before a saccade indicating a T2 choice, and we therefore call it
the state associated with T2 choices.
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Once the HMM has been specified, the spike trains that have
been observed in individual trials can be decoded to obtain the
most likely underlying state sequence. For each time bin, a set of
four posterior state probabilities can be obtained, indicating how
likely the system was in a particular state at a particular time when
emitting this sequence. Similar to previous work (Seidemann et
al., 1996; Jones et al., 2007; Miller and Katz, 2010), we required
one of these probabilities to exceed 0.8 to accept that the system
was actually in one of the identified states. All of the probabilities
being smaller than 0.8 was interpreted as the system currently
undergoing a state transition. If the system were well described by
the HMM, the state transitions should be very fast (see previous
work, but see also Discussion). Conversely, if the system does not
jump from discrete state to discrete state but its activity rather
undergoes gradual changes, we would expect to see long transi-
tion periods when decoding the spike trains. We determined the
state sequence for each trial according to this rule. More than
70% of the T2 choices were characterized by the sequence 1-0—4,
with 0 indicating that the system was not in a defined state for
some time after leaving State 1 and before entering State 4. Figure 7¢
shows the time between leaving State 1 and entering State 4 as a
function of the RT of each trial. The time between states was
positively correlated with RT (r = 0.69; p = 0.0002) and, accord-
ing to a linear regression (see figure), typically accounted for
>40% of the RT. Thus, the spike trains are typically not well
described by sudden transitions between discrete states but rather
very gradual transitions. The majority of T3 choices were charac-
terized by the sequence 1-0-2. The time between leaving State 1
and entering State 2 is shown in Figure 7d. It was again positively
correlated with RT (r = 0.66; p = 0.02) and, according to a linear
regression (see figure), typically accounted for more than half of
the RT, thus again an indication of a gradual change in activity
rather than a sudden state transition. We repeated the same anal-
ysis for an artificial dataset with sudden firing rate jumps (see
section on the first change-of-mind control analysis below for
additional details on how these data were generated and matched
to the real LIP data). We did not find any significant correlations
between RT and the time between states for the artificial jump
data (p = 0.17), and the time between states typically accounted
for <20% of the RT.

Several example trials are shown in Figure 7e—i. Figure 7e is a
typical example of a T2 choice with a 1-0—4 sequence. Time
ranges from motion stimulus onset (0) to the RT. The trial ends
with saccade onset. The top spike train is from the T2-selective
neuron, and the bottom spike train is from the T3-selective neu-
ron. The four colored lines show the posterior probabilities of
being in any of the HMM states. Time periods during which one
of the probabilities exceeded 0.8 are marked with colored shad-
ing. The color corresponds to the currently active state (Fig. 7a).
In this example, the system stayed in State 1 for ~180 ms and was
in a transitional/undefined state for >400 ms (characterized by a
continuous, gradual decline of the probability of being in the
initial state), before entering State 4 ~400 ms before a saccade to
T2. A similar example is illustrated in Figure 7f. The difference
here is that, initially, the system was moving fast toward a T2
choice, indicated by the earlier increase in the probability of being
in State 4, but returned to a more neutral state (higher probability
of being in State 3), before finally entering State 4. Figure 7g
illustrates a typical T3 choice with a state sequence of 1-0-2.

What makes this method attractive is that changes of mind
can be identified on a single-trial basis. Figure 7h shows such an
example. The system had entered State 4 ~700 ms into the trial,
meaning that it was close to making a T2 choice, but then left this
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state again ~800 ms into the trial, spent ~400 ms in an unde-
cided state, before it finally entered State 2, initiating a saccade to
T3. Even more interesting, Figure 7i shows an example of a rapid
change of mind. In this case, the probability of being in State 4
had already approached 1, meaning that the system was ex-
tremely close to making a T2 choice, but it suddenly flipped into
State 2 and a saccade to T3 was initiated. The transition period
was only 30 ms, indicating that the system is apparently capable of
fast state transitions.

The HMM analysis of a second recording session, this time a
simultaneous recording from four decision-related LIP neurons,
two of them selective for one of the choices and the other two for
one of the other choices (312 trials), is shown in Figure 8. Figure 8a
shows the structure of the HMM, which had nine states. The
system always starts in State 1 (top left, double circle). The four
numbers at the bottom of each state indicate the associated firing
rates of the four recorded neurons, with the two black numbers
reflecting the T1-selective neurons and the two white numbers
reflecting the T2-selective neurons. Arrows indicate possible state
transitions as in Figure 7a. As in the previous example, many of
the states can be mapped onto trial-averaged firing rates. Figure 8b
shows the average firing rates of the four neurons during the
first 250 ms after motion stimulus onset. The state sequence
1-7-5 approximately reflects the stereotyped (stimulus-inde-
pendent) response during the first ~200 ms after motion stimu-
lus onset (Roitman and Shadlen, 2002; Churchland et al., 2008;
Bollimunta and Ditterich, 2012). The average firing rates as a
function of time relative to saccade onset and for both T1 (solid
lines) and T2 choices (dashed lines) are shown in Figure 8¢. Each
line color (red, green, blue, gray) stands for one of the four re-
corded neurons. As can been seen, State 3 approximately maps
onto the average activity ~350 ms before a saccade indicating a
T1 choice. State 8 has an activity pattern that matches the average
firing rates ~170 ms before a saccade to T1. We therefore call it
the state associated with T1 choices. State 4 maps onto the average
activity pattern ~110 ms before a saccade to T2. We therefore call
it the state associated with T2 choices.

The model can again be used to decode individual trials. The
majority of T1 choices were characterized by state sequences of
1-0-8, 1-0-7-0-5-0-8, 1-0-7—-0-8, or 1-0—-5-0-8. Figure 84
shows a typical example of a 1-0-5-0—-8 sequence. The top two
spike trains reflect the activity of the T1-selective neurons, and
the bottom two spike trains reflect the activity of the T2-selective
neurons. Again, typical decision trials were characterized by
spending a substantial amount of time (several hundred millisec-
onds) in a transitional/undefined state. Typical T2 choices were
characterized by state sequences of either 1-0—4, 1-0-9-0-4,
1-0-5-0-4, 1-0-7-0-9-0-4, or 1-0-7-0-—4. Figure 8e
shows an example of a 1-0—4 sequence with >700 ms between
leaving State 1 and entering State 4. Figure 8fillustrates an exam-
ple ofa 1-0-5—0—4 sequence, and Figure 8¢ shows an example of
a 1-0-7—-0-5—0—4 sequence. All of these again have in common
that the system spends a considerable amount of time (several
hundred milliseconds) in a transitional/undefined state. Like in
the case of the previous session, we can also look at changes of
mind on a single-trial basis. Figure 8/ shows an example of a trial
in which the system had spent 300 ms in State 8, meaning that it
was already close to making a T1 choice but ended up switching
to State 4, and the trial ended with a T2 choice. Approximately
120 ms passed between leaving State 8 and entering State 4, and
the system passed through State 2, a state characterized by all
neurons having intermediate firing rates. Another change-of-
mind example is illustrated in Figure 8i. Again, the system had
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HMM analysis: second example session. a, Identified HMM with nine states based on a simultaneous recording from four LIP neurons. Two neurons were T1 selective (black FRs), and

two were T2-selective (white FRs). State 1 (top left) is again the initial state, and States 8 and 4 at the bottom are associated with T1and T2 choices, respectively. Otherwise, the conventions are the
same as in Figure 7a. b, Approximate mapping between the average firing rates (colored lines) during the first 200 ms after motion stimulus onset and States 1,7, and 5 (colored, filled circles with
associated numbers). ¢, Approximate mapping between trial-averaged firing rates of all four neurons (red/green/blue/gray lines) for T1 (solid lines) and T2 (dashed lines) choices and States 3, 4, and
8 (colored, filled circles with associated numbers). d—i, Examples of decoded individual trials (same conventions asin Fig. 7e—i). d, Example of a T1 choice. e- g, Examples of T2 choices with different
state sequences. h, i, Examples of T2 choices with a change of mind: the system spent some time in State 8, the state associated with T1 choices, before switching to State 4.

spent already 200 ms in State 8 when it switched to State 4. In this
case, ~90 ms passed between leaving State 8 and entering State 4.

To obtain a better picture how often and under what circum-
stances changes of mind occurred, we analyzed a total of six ses-
sions with two to four simultaneously recorded neurons that
were selective for two different choices. These recordings are ex-
tremely difficult to obtain, but they provided us with a total of
2062 decoded individual decisions. A total of 63.7% of the state
sequences ended in the state that was the most frequent final state
for this particular choice, which we call the state that is associated
with this choice. A total of 35.6% ended in an undefined state,
meaning that none of the posterior probabilities exceeded 0.8,
but in 83% of these cases, the associated state was the most likely
one. Thus, 93.2% of all decoded trials ended with the associated
state being the most likely one. A total of 0.5% of the trials ended
in a state that was not associated with any of the two choices
represented by the recorded neurons, and only three trials (0.1%)
ended in the state that was associated with the other choice. Thus,
it was extremely rare that the final state suggested a choice that
was different from the one that the monkey had actually made.
Fifty-one (2.5%) of the 2062 analyzed trials were change-of-mind
trials, meaning that both states associated with choosing the tar-

gets in the RFs of the recorded neurons were members of the
decoded state sequence. The average net motion strength on
these trials was 9.4%, which is significantly smaller than the av-
erage net motion strength on all trials (14.7%; p = 0.001, Wilc-
oxon’s test), indicating that changes of mind were more likely to
occur during difficult discriminations than during easy discrim-
inations. Twenty-seven of these trials (53%) led to an improved
outcome because the monkey switched from a wrong choice to
the correct choice, only five (10%) led to a worse outcome be-
cause of a switch from the correct choice to a wrong choice, and
19 switches (37%) had no impact on the outcome of the trial
because it was either a switch from one wrong choice to the other
wrong choice (eight trials) or because the net motion strength
was 0 (11 trials), meaning that all targets were equally likely to be
rewarded. An improvement in the outcome of 27 of the 40
change-of-mind trials with non-zero net motion strength is sig-
nificantly more than what would be expected by chance (p =2 X
10 7>, x* test). If one were to construct random state sequences
with two states that are associated with two different choices in
them, the expectation would be that in one-third of them a state
associated with the correct choice should be followed by a state
associated with a wrong choice, in one-third of them both states
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should be associated with wrong choices, and in one-third of
them a state associated with a wrong choice should be followed by
a state associated with the correct choice, leading to an improved
outcome. We also analyzed the RT of change-of-mind trials and
found that 90% of them had an RT that was larger than the
median RT of trials with this particular combination of choice
and net coherence. Thus, changes of mind tended to be associated
with significantly longer RTs than normal (p = 2 X 10 ~?, bino-
mial test).

Because the changes of mind were still low-frequency events,
we sought additional confirmation that our analysis was not
driven by random fluctuations but indeed identified a temporary
preference for a choice that was different from the monkey’s final
choice. To this end, we performed two additional analyses.
The first one was based on creating two artificial datasets for
each real dataset, which were matched for number of trials,
number of neurons, and firing rate profiles but did not contain
any changes of mind, and repeating the HMM analysis. In the
first dataset, each neuron emitted a Poisson spike train that
followed the average firing rate profile of real neuron during
the first 200 ms of each trial and then spent the remaining time
of the trial ramping linearly to the average final firing rate of
the neuron for the monkey’s choice on this particular trial. In
the second dataset, the first 200 ms were the same, but, instead
of ramping to the final firing rate, all neurons would initially
stay at the average firing rates 200 ms into the trial and, at
some random time during the remaining time of the trial,
jump to their final average firing rates for this particular
choice and stay there until the end of the trial. For neither of
these two different types of artificial datasets did the HMM
analysis report more than two change-of-mind trials, indicat-
ing that false positives seem to be extremely rare.

The second analysis was based on the idea that, if the monkey
had indeed developed a transient preference for a different
choice, it might have, at least partly, been driven by fluctuations
in the sensory stimulus. Although the stimuli were generated on
the fly during the experiment, we had stored all necessary infor-
mation to be able to recreate each of them exactly. We therefore
recreated all stimuli that had been shown during change-of-mind
trials and sent them through a set of motion energy filters, similar
to those used by Kiani et al. (2008), to extract the time courses of
motion energy in all three relevant directions. We then aver-
aged the time courses of the motion energy component sup-
porting the monkey’s final choice, as well as the motion energy
component supporting the monkey’s transient preference,
time-locked to the maximum posterior probability of the state
associated with the temporary preference, as reported by the
HMM analysis. The result of this analysis is shown in Figure 9.
If the identified changes of mind were simply false positives or if
they were only driven by factors other than the sensory stimulus,
the average motion energy would not be expected to show any
significant modulation around the time of the transient prefer-
ence. However, as can be seen in Figure 9, the motion energy
component supporting the monkey’s final choice tended to drop
just before the temporary preference for a different choice,
whereas the motion energy component supporting the tran-
siently preferred choice tended to increase just before such an
event. This does not only indicate that the identified changes of
mind were not just false positives but also that temporal fluctua-
tions in the sensory stimulus made a significant contribution.

To summarize, the HMM analysis demonstrates that being in
afiring rate state that resembles the typical activity pattern shortly
before a particular choice does not necessarily mean that the trial
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Figure 9.  Fluctuations in motion energy and changes of mind. The plots show mean net
motion energy in the random-dot stimulus (difference between motion energy in one particular
direction and average of the motion energies in the other two directions) across all identified
change-of-mind trials, time-locked to the probability peak of the transient state reflecting the
temporary preference for a different choice option (vertical dashed line). The red trace shows
the net motion energy driving the sensory evidence for the transiently preferred option, and the
blue trace shows the net motion energy driving the sensory evidence for the option that was
chosen last by the monkey. The confidence bands reflect =1 SE. The temporary preference for
a different choice option during identified change-of-mind trials tended to be preceded by a
drop in the net motion energy supporting the final choice and an increase in the net motion
energy supporting the temporarily preferred option.

will be terminated by exactly this choice. We have seen quite a
number of examples of changes of mind, meaning that the system
transitioned into a state associated with a different choice. At
times, these transitions were surprisingly fast (down to 30 ms).
Thus, the neural system that is reflected by the activity of
decision-related neurons in parietal cortex seems capable of fast
state transitions, but the majority of trials, as supported by the
other types of analyses, are characterized by gradual changes in
neural activity.

Discussion

In contrast to previous SU recordings of decision-related activity
in parietal cortex during perceptual decision tasks, which did not
provide sufficient data for assessing the neural dynamics at the
single-trial level, we have made use of simultaneous recordings
from up to four decision-related neurons to analyze how the
neural activity changes over time during individual decisions.
The results consistently indicated that, overall, the LIP popula-
tion response during individual decisions is better explained by a
gradual change of neural activity, as expected from an integrator-
based mechanism, than by a sudden change of activity, as ex-
pected from a mechanism based on stochastic transitions
between discrete states. The HMM analysis further allowed us to
identify and analyze changes of mind during individual decisions
at the neural level.

SI analysis

In contrast to Horwitz and Newsome (2001), who reported that
the majority of SUs recorded from the SC during a similar task
had negative Sls, only a minority of our single-trial estimates of
the LIP population activity (based on two to three neurons) had
significantly negative SIs. Whereas Horwitz and Newsome inter-
preted their result as potentially indicating that SC neurons make
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transitions between discrete firing rate states, our results indicate
that the average single-trial LIP population response is more con-
sistent with a gradual firing rate change. The discrepancy between
the findings could be attributable to either having recorded from
different areas (SC vs parietal cortex) or our results being based
on at least two simultaneously recorded neurons, whereas the SC
result was based on SUs. The results at the population level and at
the SU level do not necessarily have to agree. For example, a
single-trial ramping response at the population level could be
implemented by different neurons in the population stepping at
different times. When repeating our analysis at the SU level, again
only a minority of the neurons had significantly negative SIs.
Thus, the difference in results is most likely attributable to SC
and LIP having different neural dynamics during individual
decisions.

A number of the analyzed LIP sessions had significantly pos-
itive mean SIs when, like Horwitz and Newsome, using an anal-
ysis bin width of 25 ms. One possible scenario that could lead to a
positive SI, as mentioned by Horwitz and Newsome, would be an
extremely long refractory period. However, an analysis of the
interspike interval distributions argues against this being the or-
igin of our positive SIs. Alternatively, we found that robust peri-
odic firing rate modulations with a frequency between 15 and
20 Hz could also reliably induce positive SIs. Because this effect
critically depends on the choice of the bin width used for the SI
analysis, we tested whether the SIs would change if the data were
analyzed using a bin width of 40 ms instead of 25 ms. Almost all
significantly positive SIs disappeared at both the population and
the single-neuron level. Thus, it is quite likely that the observed
positive SIs originated from periodic firing rate modulations.
This is consistent with our finding of a task-relevant modulation
in the 10-20 Hz band of the local field potential (Bollimunta and
Ditterich, 2012).

HMM analysis and changes of mind

The initial assumption behind the HMM analysis is that the
activity pattern of a population of neurons can be described as
sequences of discrete states, which are all characterized by a
particular set of firing rates across the analyzed neurons. The
technique had previously been used to reveal sequences of
task-relevant states with sharp (on the order of 50 ms) transi-
tions (Seidemann et al., 1996; Jones et al., 2007). Although our
HMM analysis resulted in states that were associated with
particular choices, the state transitions were mostly slow.
Their average duration was 342 ms, and again, on average, only
25% of the trial duration was spent in one of the identified states.
This seems to argue against a neural system that makes fast, sto-
chastic transitions between discrete states. However, an analysis
of the state transitions that were observed for our artificial data-
sets with either ramping or jumping responses yielded very sim-
ilar results. These parameters are therefore apparently not
particularly sensitive to how gradual or how sudden the firing
rates change in our case. One reason is probably that, even in the
case of artificial jumps in the later part of the trial, the firing rates
were always undergoing gradual changes during the first 200 ms.
Another reason is probably that the firing rate changes were
sometimes too small to allow a reliable identification of fast tran-
sitions by the HMM analysis. The observation of longer transi-
tion durations than what has been reported previously in the
literature should therefore not automatically be interpreted as
evidence against fast changes in firing rate. However, the SI anal-
ysis and the comparisons between ramping and stepping non-
homogeneous Poisson models, which were more sensitive in this
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respect, suggest that firing rate changes in the LIP population
during individual decisions are mostly gradual.

Because the HMM analysis estimates the most likely state se-
quence for each individual decision, one can identify trials whose
state sequence contains states associated with two different
choice alternatives. These are decisions during which the pattern
of neural activity was already very similar to one that is typically
obtained just before making a particular choice, but then the
pattern changed and the trial ended with a different choice. We
have referred to these trials as changes of mind. These neural
observations share similarities with the behavioral observations
made by Resulaj et al. (2009) in a version of the random-dot
motion discrimination task that required human subjects to
move a manipulandum from a starting position to one of two
possible target positions. On a fraction of trials, these authors
observed movements that started toward one of the targets, but
ended at the other. Resulaj et al. referred to these trials also as
changes of mind, which were more likely to occur during difficult
discriminations (low coherence) than during easy discrimina-
tions (high coherence). Furthermore, they were more likely to
change an incorrect choice into a correct one than vice versa. Our
neural changes of mind had similar properties: they occurred
mostly during difficult discriminations, and the majority of
switches were from an incorrect choice to the correct choice. We
further demonstrated that our neural changes of mind tended to
be associated with longer-than-average RTs and that it was pos-
sible to identify features in the motion energy time course of the
sensory stimuli that contributed to the monkeys’ transient choice
preference. Our results therefore indicate that simultaneous re-
cordings from multiple LIP neurons can be used to decode the
time course of individual perceptual decisions.

Neural dynamics of perceptual decisions

As has been pointed out in the literature (Gold and Shadlen,
2001; Bogacz et al., 2006; McMillen and Holmes, 2006; Ditterich,
2010), nearly optimal perceptual decisions based on continu-
ously inflowing sensory information should be based on (Multi-
hypothesis) Sequential Probability Ratio Test-like algorithms,
which require an operation close to perfect mathematical inte-
gration. Neural integrators can be implemented with attractor
networks (Seung, 1996), with perfect integration being character-
ized by a flat energy landscape. If the integrator is leaky, the
energy landscape has a slope that tends to move the system to-
ward background activity levels. Other decision-making net-
works are based on the choice alternatives being represented by
point attractors, which means that the energy landscape is sloped
such that the system tends to move toward one of these attractors
once it enters its attractive basin (Wong and Wang, 2006; Deco et
al., 2009). The starting point can be either stable or unstable. In
the first case, the system needs to be pushed out of the attractive
basin of the initial state by strong enough sensory evidence, and,
in the second case, it is free to move toward any of the choice
attractors. If the attractor basins are deep enough and the slopes
therefore steep, the system has the tendency to make stochastic
transitions between states associated with the different point at-
tractors and therefore exhibits jump-like behavior.

Our analysis of the single-trial activity in parietal cortex of
monkeys performing perceptual decisions indicates that jump-
like transitions are not the typical operating mode of the decision
circuitry. The analyses that have been described in this paper
point toward a gradual change of neural activity during most
individual decisions, which suggests that the energy landscape, at
least around the starting point, is relatively flat. Furthermore,
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change-of-mind trials indicate that being close to one of the
choice “attractors” does not mean that the outcome of the deci-
sion is irreversible. The basins of attraction around the choice
alternatives therefore cannot be so steep that an escape is impos-
sible. Interestingly, we have also seen examples of fast state tran-
sitions (from a state associated with one of the choice alternatives
to a state associated with another alternative in <50 ms), indicat-
ing that the system also seems capable of jump-like behavior.
Thus, it will be interesting to see in future theoretical work how a
decision network can exhibit both gradual changes in activity and
also less frequent jump-like state transitions.
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